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Abstract

- The problem of routing control in an open queueing network under condi-
tions of heavy traffic and finite (scaled) buffers is dealt with. The operating
statistics can be state dependent. The sequence of scaled controlled state pro-
cesses converges to a singularly controlled reflected diffusion (with the associated
costs), under broad conditions. Due to the nature of the controls, a 'scaling'
method is introduced to get the convergence, since the actual sequence of pro-
cesses does not necessarily converge in the Skorohod topology. Owing to finite
buffers, an extension of the reflection mapping needs to be obtained. The op-
timal value functions for the physical processes converge to the optimal value
function of the limit process, under broad conditions. Approximations to the
optimal control for the limit process are obtained, as well as properties of the
sequence of physical processes. The optimal or controlled (but not necessarily
optimal) limit process can be used to approximate a large variety of functionals
of the optimal or controlled (but not necessarily optimal) physical processes.

Key words: routing control, weak convergence, singular control, queues in heavy
traffic, reflected controlled diffusions.
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1. Introduction

We consider the problem of optimal or nearly optimal routing in a queueing

system under heavy traffic conditions. The general network model is a "con-

trolled routing" form of the general open network dealt with by Reiman and

Harrison [1] or Reiman [2], where each customer eventually leaves the system.

We will actually treat two special cases for simplicity in the development. But

it should be apparent from these cases that the general open network can be

treated in the same way. The treated cases involve all the basic technique that

is required for the general case. In [2], one has a finite set of servers, each with

an infinite buffer. We bound (and appropriately scale) the buffer, here. It is

well known [1], [2], that under broad conditions on the service and interarrival

times, the vector of queue length processes (with an appropriate amplitude nor-

malization and time scaling) converges weakly to a reflected diffusion, as the

traffic intensity goes to unity.

The work in [2] required that the system operating statistics not be state

dependent, and used results for the weak convergence of a sequence of sums of

mutually independent random variables to a Wiener process, together with a

clever method to treat the boundary to get the appropriate limit. The methods

are not extendible to the state dependent or to the controlled case, where the

required independence no longer holds, and the characterization of the limit

processes as well as the proofs of tightness require different methods. The

"martingale type" methods for getting limit theorems for wide bandwidth noise

driven systems seem to be more appropriate. In reference [4], there is a study

of a heavy traffic problem under a control, and the arrival and service processes

were allowed to be state dependent. Such state dependence is natural for the



controlled problem, since one might want to let the processing depend on what

is happening in the system. In addition the methods which are needed to

characterize the controls in the limit problem as 'non anticipative', etc., require

the use of the same methods that the state dependence requires.

In [4], the processors and the arrival sequences could be shut on or off to

control the flows and the costs. The limit problem was an impulsively con-

trolled reflected diffusion of a non classical type, since there was the possibility

of multiple 'simultaneous' impulses. It was shown in [4] that any sequence of

controlled physical processes with uniformly bounded costs converged to a well

defined controlled limit process. Also the sequence of optimally controlled phys-

ical processes converged to the optimally controlled limit process, in the sense

that the value functions converged. Also a control which was nearly optimal

for the limit process could be adapted to become a nearly optimal control for

the physical process under heavy traffic, under quite broad conditions. Such

results help to justify the use of heavy traffic limit theorems for the purposes

of optimal other control. Because of the behavior of the physical process in

[4] when the on-off controls were used, the Skorohod topology had to be used

with care, because the actual scaled queue length processes did not converge

in the Skorohod topology as it is usually used. Also, that reference provided

convergent numerical algorithms.

In this paper, we also deal with a controlled heavy traffic problem. In the

basic model, the routing of a subset of the external arrivals could be controlled.

The aims are similar to those in [4]. The dynamical equations for the scaled

queue length process is defined. The sequence of such processes, (as the traffic

intensity tends to unity) might not be tight in the Skorohod topology, due to
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the nature of the routing control. To handle this, we start by working with a

rescaling of the time, with which we can get tightness, and a characterization

of the weak limits. The rescaling depends on the control. After the limits are

obtained, an 'inverse' scaling (dependent on the limit control) yields the process

which actually characterizes the limit of the cost functionals. The limit process

is a controlled reflected diffusion. But the control is of the 'singular' type in the

sense of [8]. The usual reflection mapping which is used to handle the problem

of non-negativity of the queue length process must be modified here, due to the

presence of the finite buffer. We construct the proper reflection mapping from

a sequence of concatenations of the usual one.

The basic proHom of interest is defined in Section 2. We work with a system

of only two processors for notational simplicity. Also, until Section 7, we do not

have feedback. The addition of feedback is straightforward, but it seems to

be preferable to present the ideas in as unencumbered a fashion as possible.

The extension of the result to the general routing controlled open network is

straightforward. Some of the weak convergence arguments and definitions from

reference [4] are used, but familiarity with that reference is not necessary. In

Section 2, we maaiipulate the state equations into the 'martingale plus drift'

form which will be used in the weak convergence arguments. The reflection

mapping result is stated in Section 3 (and proved in Section 8). The required

rescaling is defined and the tightness and weak convergence proved in Section

3. We must prove that the limit (singular) controls are non anticipative with

respect to the Wiener processes which 'drive' the limit process.

Section 4 is concerned with the convergence of the cost functions. We prove

that there is a routing control with a uniformly bounded cost, and show that the
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liminf of the optimal cost functions for the physical processes is bounded below

by the optimal cost for the limit process. In order to show that the limit of the

optimal costs for the physical processes is the optimal cost for the limit process,

we need to prove various existence and approximation results for the optimal

policy for the limit problem. This is done in Section 6, and uses the 'limit

form' of the control dependent rescaling introduced in Section 3. An interesting

approach to the approximation problem is discussed. The general rescaling and

tightness methods are of much wider use for limit and approximation problems

where singular controls are involved and where there might not be convergence

in the Skorohod topology. The developed approximations are then used to prove

the approximate optimality for the physical processes of an appropriate nearly

optimal policy for the limit process.

This seems to be the first work which deals with such contiolled routing

problems. Approximations to singular control problems for wide bandwidth

noise driven systems were discussed in [6], but the method used herc is rather

different and is very natural for the sorts of problems that are being considered.

Numerical methods have been developed for the problems of this paper. The

proofs of their convergence require methods which are similar to those used

here, but since there are many additional details, they will be dealt with in a

subsequent paper.
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2. Problem Description

Until Section 7, we work with the simple system of Figure 1. This will enable

us to develop the main ideas without an excessive notational burden. Also, for

notational convenience, we work with a discrete time parameter. The results

for the analogous continuous time parameter case are the same. Each of the

pro-essors PO. P and P2 has its own stream of arrivals from the exterior. PO is

used only as an (instantaneous) routing node. Its service time is zero. This can

readily be changed, and the res,.drng network would then be a special case of

the general network discussed i,, Section 7. The P0 routes to either P or P2.

and (until Section 7). the completed services from P and P2 leave the system.

The routing decision is based on the events up to the time of the decision. We

suppose that some prior routing is assigned to each new arrival to P0 , but that

the routing nc-de can reassign, with an associated profit or loss. Next, we give

some simple examples.

Example 1. There are two classes of customers arrivin 6 (at random) at Po.

P, is more efficient for class i, and a prior assignment of class i to P, is made.

But Pr, can reroute to the less efficient processor, depending on the system state.

The cost of rerouting might be, for example, a set up cost.

Example 2. The cae of Example I, but with three classes of customers,

arriving at random. Class i (i = I or 2) must be served by Pj. Class 3 can

be served by either processor, but one of the Pi is more efficient (cheaper) and

a prior assignment to that P is made. But P0 man alter the assignment. For

example, let the P, represent data bases, with some overlap of data files. A

subset of the arriving jobs need only the 'overlap' data. But one of the P is
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'faster' than the other.

Example 3. P is cheaper for all customers arriving at P0. But, due to

the heavy traffic conditionis, the nean umber uf customers routed to eF' 1h P, is

essentially fixed (moduv> some fraction which goes to zero as the traffic intensity

goes to unity). Some prior assignment is made but P0 can reroute at either a

',ost or a savings if appropriate.

In general. the model can be readily extended to handle rerouting of a cus-

tomer actually in a queue as well as reneging.

In the modelling of systems under heavy traffic conditions, it has been the

usual practice to suppose that the processors 'keep processing' and create de-

partures even if the queues are empty [1]-[4]. Whatever 'fictitious' d>.lztr,,

occur due to this convention are compensated for by an added 'reflection term'

(our Y below). 'Ihus each Pi (i = 1,2) has associated to it a sequence of service

intervals which cover all time. This convention simplifies the analysis. Also, we

suppose (as is the usual practice) that if a customer arrives at P or P2 when

the associated queue is empty, then the service time for that customer is just

the residual time of the current service time interval for that processor. As in

[1]-[41, this convention does not affect the limit processes.

Since we work in discrete time, it is possible that multiple events can occur

at the same time at P or P2 . For the sake of precision, we suppose that a

departure (real or fictitious) from a processor always occurs 'just before' any

arrival to that processor, and that if two arrivals to the same Pi occur at the

same time, then the one from P0 takes precedence. Such a conflict might arise

if there is only space for one customer left in some buffer, but there are two

arrivals. We ignore the'e distinctions in the notation, for simplicity. It can be
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shown that the precedence relations do not affect the limit.

Definitions. We use the notation of [4] whenever possible, although knowl-

edge of that reference is not needed for the reading of this paper. The symbol

indexes the traffic intensity; as c - 0, the intensity goes to 1. For each C > 0 and

i= 1,2, let { , n = 1,2, ... ), denote the sequence of service times for P, and

let t" be the indicator function of the event that a service (real or fictitious)

is completed at P, at time n. For i = 0, 1.2 and each c > 0, let f, n < cc}

denote the sequence of interarrival times to P, from the exterior of the system,

and let tf. i = 0.1.2. be the indicator of the event that there is an external

arrival to P, at time n. Write 1/( for [t/c], the largest integer which is no bigger

than t/c. Define X'A' = V(- (number of customers waiting for or in service at

P, at time n). and set X '(t) = X"/. In general, for a sequence {Z,"}, define

the function Zt) = Z,/,. The buffer of P, i = 1,2, has size Bi/fVc, which we

assume is always an integer. Let I- denote the indicator of the event that an

arrival at PO at time n has the prior assignment to Pi, and let pj,7, j : i, be

the indicator of the event that this arrival is reassigned to P-

We usually use the convention that the superscript c is dropped whenever

one of the above terms is used as a summand. Define (j :$ i)

n nO

n

m=0

=0

71

mi. =.l . _0 .

= r Vi'



m= 0

= ril{X;=B.} + Vrf EI d(, + 14,' -,P,')1X=~

The A' - is the scaled total number of arrivals (by time n) at Po which have

been a priori assigned to P (they might, of course, be rerouted by PO).

The J'j)' are the 'rerouting' control terms, the scaled number of customers

originally destined for P, but rerouted to P,. The Y,'~ is the scaled total number

of 'fictitious' departures due to our convention of continuing to 'process' even

if the queue is empty. and U', is the number of customers lost to Pi when its

buffer is full.

The mass balance equations can be written as (discrete 'real' time and 'in-

terpolated' time. resp.)

X, X' '+ A' -iAOS"'DD + Jn + 1 (2.1)

XIfm= ,' + .41 ((t) + Ao()- & (t) + J',(lf) + )" (t) - U''(t). (2.2)

The cost function. Let .3 > 0. c, > 0, k, > 0. and let k(-) be a bounded

and continuous function. Define P = (J 1 2 ,c, J2 l1 "). We use the cost functional

1"(X. Jo = Er~ ]0 C -;"k(Xo(t))dt + E, ]0c e-'9 t [kidJ 12 ,,(t) + k 2d,7 -'(t)

+ c, dl",(t) + C2 dU 2 ,,(f)A. (2.3)

By Theorem 7 below, there are routing policies JiiE'(.) for which

sup V, (Z,'P) < oo. (2.4)

Define

V()= inf V'(x,JP).
.
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The k(.) might be non-linear. Such non-linear k(.) occur when we wish to model

the costs of reneging or queue switching, or if we wish to limit the possibility of

leaving the queue due to a 'long' wait. The second term in (2.3) penalizes the

overflows and rerouting. One of the ki can be negative and we return to this

case at the end of Section 6.

Definitions and heavy traffic assumptions. We take many of the defini-

tions from [4] so that the results of that reference can be conveniently used. De-
Ckne . Z' En= A,. Define S'(-) by S.'(t) = max{cm

£S*., < 1}, and define ' (.) analogously. These functions are the 'inverses'

of the functions cS~i. (.). Let E.a,j denote the expectation, conditioned on the

arrival and departure intervals which started by S,' (except for et and

the control (routing) actions taken up to San.Define E'~n analogously, where

S'd.n and + replace Sa,' and a"' 1 , resp. Similarly. define the conditional

variances vary;,n a = a, d. We use the notation

Ea,.1 l+i ,+I d~n n1+ - 1+1

var .o+ a = (on,+1 )2, v'ara~ .+ = (ad,+)2•

\Ve will use the following assumptions. A2.1 and A2.4 are the 'usual' heavy

traffic assumptions. (A2.4) basically says that (modulo a term which goes to

zero as ( - 0) the mean rate of arrivals to Pi equals the 'capacity' of P,.

A2.1. There are real gai > 0, 9d > 0 and bounded and continuous real

valued functions a'(.) and d'(.) such that

( )--1dx-a = ga + Vi + o(i)

(-An'+J)-' I + v\/di + o(4'),

9



where

a,, = a' (Xs,,), di,, =d"(X

Note that X',, is the value of the state at the beginning of the n + 1st

interarrival interval, and so it is the correct argument of the a'(.) above, and

similarly for the d(.).

A2.2. {Io£.c4I 2, Ai.c 12, i,n,( > 0) is uniformly integrable.

A2.3. There are pi such that P{In'e = 1 1 all arrival or departure intervals

starting by time n and routing actions up to time n - 1} = A.

This assumption can be weakened in many ways, allowing for batch rerouting

and other variations, as well as correlated routings. All that is really needed is

that -loosely speaking', T, be a 'local mean' of the conditional expectations and

satisfy (A2.4).

A2.4. For the T, defined in (A2.3), Pigao + gai = gdi, i = 1,2.

A2.5. There are continuous and bounded real valued functions aai(), Udi(.)

such that
i.f e

Ura,r+1 = 0i( s, + 6,

d'n,+= O'd,i(Xs., ) + 6,
S'..

where 6, and 6' f 0 uniformly in all other variables.

In the sequel, we suppose for simplicity that all auj(x) > 0 for all z, a. The

results are true even if this condition is violated.

A more convenient representation for X'(.). The 2nd to 4th terms

on the right side of (2.2) go to infinity as c -. 0. For purposes of the weak

convergence analysis, it is helpful to center these terms so that we can work

10



with martingales and processes of bounded variation. We follow closely the

procedure used in (4, Section 3] with a slightly different notation. Access to

that paper is not needed. Define the following processes.
t/e

0 o,(1) = Vr 0 ai,,,/Z",1)
M= 1

t/f

0 = '.,,/e F, ,I (2.5)
m=1

m=1

The summand in (2.5) are all centered about their conditional expectations,

given the 'past' data. Hence, the sums are martingales. Henceforth, we simply

write the indicator function which appears in the second sum as I .

As in [4, Section 3], we can write (recall that A'.-(1) = ") ,

, ,(t)

Ai = -(t)) + VT ' 1,2,

n "'(t) Ao  ( (t)) + V Z ' i" *

mn=1

line of ( from th smoOf a, (2.6)
Mn=1

1=1
The first terms on the right sides of (2.6) are just scaled martingales. The right

hand terms in (2.6) 'blow up' as c - 0. In (2.2), the sum of the first two minus

the 3rd term of (2.6) occurs. Subtracting the far right-hand term on the 3rd

line of (2.6) from the sum of far right-hand terms of the first two lines of (2.6),

and using the heavy traffic assumption (A2.4), the expansion (A2.1), and the

fact that

&i A~ = + o(C) = ve- a
M=1 VC ,1



yields (as in [4, Section 3]) the expression

T.", ~ ~ S (()t')/ov

1: a' ai + L Pio aom - c A'dm +~ 6f(t), (2.7)
tn=I = m=I

where 6"()is such that sup 16"'(t)I 14 0, for each T < oo.

For i = 1,2, let A",(t), A0 ", (t) and D',e(t) denote the first terms on the

right side of (2.6). Define bi(x) = a'(x) + Pja0 (z) - di(x) and

B' '(1) =j bi(XE(s))ds.

Then, modulo an error (which we absorb into 6 ())of order 0(f) due to the

approximation of the sum by an integral, (2.7) equals 6Ef(t) + BIEf(t) and

XI'~)= AO' + [A' -(t) + -A'0 'c(t) - D'' (t)] + BeQt)

+ Ji "(1) + ySCf(f) - U',((t) + b6'' (t). (2.8)

12



3. Weak Convergence

In this section, we deal with the weak convergence of the terms in (2.8), as

c - 0. Let Dr [0, oo) denote the space of Rk-valued right continuous functions

with left-hand limits and Ck [0, oc) the subspace of continuous functions. For all

the weak convergence work, we use Dk[0,oo) under the Skorohod topology [5,

Chapter 3.5]. We will often use the Skorohod representation [5, Theorem 3.1.8]

so that we can always assume that if a sequence of processes converges weakly,

then the convergence is (w.p.1) also pathwise in the topology of the path space.

There are two main problems. First, little is known about the control terms

!i(.). In general, even if bounded, they need not converge in the Skorohod

topology. Indeed, their behavior can be quite 'wild'. The pseudopath topology

[7] could be used, as it has been in [6] for some approximation and convergence

questions arising from systems with wide bandwidth noise disturbances under

singular controls. For our purposes, it is more convenient to work directly with

the Skorohod topology, but with a rescaled set of processes. (Some comments

on the relations between scaling and the pseudopath topology are in [9].) After

getting the desired weak convergence, we invert the 'limit' of the rescalings to

get the result for (2.8).

The second problem concerns the treatment of the reflection terms Y'(.)

and U.E(.). Owing to the presence of the upper boundary, the reflection map-

ping theorem of [1], [2] cannot be used directly. The following extension is

proved in Section 8.

Theorem 1. Let Q be a k x k probability transition matriz whose spectral

13



radius is less than unity. Let z(.) E Dk [0, ox) and consider the equation:

z(t) = zMt + (I - Q'YMt - u(i). (3.1)

There is a continuous function (in the topology of uniform convergence on

bounded time intervals) F() such that (y(.), u(.)) = F(z(.)) has the follow-

ing properties: F(.) maps Ck [0, 0o) into Ck*[0,c) and DL*[O,oc) into Dk[0,cc);

for i = 1, 2, y'(.) and u'(.) a"e non-decreasing and increase only when x'(t) = 0

and x'(t) =Bi, resp. Eqn. (9. 1) holds and x'(t) E [0, Bi].

Using the martingale properties of the sums defined in (2.5), it is not hard

to prove Theorem 2. In fact, the proof of the first paragraph is given in Lemma

5.2 in [41, and the proof of the second paragraph is in [4, Theorem 5.1].

Theoremi 2. Assume (A2.1) to (A2.5). Then, for or = a or d, the processes

with values eS~ and '()converge weakly to the deterministic functions

with values t/g,,i and tg,,, resp. The processes

are tight and the limit of any weakly convergent subsequence of the five sequences

(we always pair together AP1,1() and Aj02 ,t(_ )) are orthogonal continuous mar-

tin gales.

The quadratic variations of the limit martingales are, resp., the weak limits

Of

YEd(X(8))ds, i = 1, 2(3. 2)

where

Ei~0 d) = Co,() i =1, 2,

14



[T10 - TO -51T2 1 +2 1

O(X)=g I -PlP P2 (-p 2 ) + g a°() PIP 

Edi(X) = g3 Or(X), i = 1,2.

Since the proofs of an almost identical result is in the cited reference, we

omit it and comment only on how (3.2) is calculated in one case.

The quadratic variation of the discrete parameter martingale A"(.) is (re-

calling that the argument of o,i(.) is the state at the time of arrival of the mth

customer)

ZE ,d1 atC/l1()2 = c )XE' (I g- ai f = (' )m
rn=! rn gaaiXI.

+ (small terms).

Neglecting the small terms (which go to zero, as c 0), we can write the

quadratic variation of .4,'(.) as

vn~l 'a' 
rn
m ar

S'(t~fe g22(Xoi 0i(Xs )~

(wo:S." (3.3)
T- a ,( m a

The variance of the second term in (3.3) is 0(d) due to the centering of the

summands about the conditional expectations. The first term in (3.3) can be

written as (modulo an error of order O(Vl))

9ao' 3a"i( X' (s))ds" (3.4)

Thus, we obtain the first line of (3.2), for i = 1,2.

The time rescaling. The weak convergence proofs for the terms in (2.8)

is facilitated by means of a rescaling or 'stretching out' of time. Define T'(.) by

[P1 +Pr41- P12 21,
T'(nE) = nc + c + - P

m=1

15



and for t E (nc, ne+ c), define T'(t) to be the piecewise linear interpolation. Let

TP(.) denote the inverse function to T'(.). For any function 0(.) on [0, Oo), define

the function 4'(-) by ((t) =(T().Similarly, define A' t (t)

etc.

Theorem 3. Assume (A2.1) to (A2.5). Then

is tight and all limits are continuous processes. Also

{.A 1 ,'(. ) ,j 2,(. ) ( AO(.), A40111(.)), D'',(.), D2 ,,(.), C > 0] (3.6)

is tight and the limits of any weakly convergent subsequence of the set of five se-

quences are orthogonal continuous martingales. Let c index a weakly convergent

subsequence of (3.5), (3.6), and denote the limits by the same letters, but with

the e dropped. Then

:Xi(t) = i)+bit+ 4it 'it)-bt)+ 't)-Of)+P t P t.

(3.7)

Y')increases only when k'(t) = 0 and Ul'(.) increases only when k'(t) = Bi.

Also.

B'.()= j b(Xs))dt(s). (3.8)

The quadratic variations of the martingales are

Ii 20 (X(s))dT(s), i = 0, 1,2,

j d(X(s))dT(s),i i= 1,2. (3.9)
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For the particular chosen weakly convergent subsequence, let F denote the

minimal a-algebra which measures {P(s), s < t}, where

P(s) = (Xk(s), J12 (s), j21 (s), Ai(s), A" (s), li(s), t(s), i = 1,2).

Then the martingales are all .t-marlingales.

Proof. The set (3.6) is tight and has the asserted properties by Theorem 2,

since (3.6) is just the sequence dealt with in Theorem 2, but with a 'stretched

out' time scale. The { J(.), J12,(.), j21,,(.), e > 0} are tight since their incre-

ments between any t,t+s are bounded by s+O(Vfi). The set { c(), e > 0} is

obviously tight.

To treat the Y'(.) and UI,(.), we use the representation of the reflecting

terms of Theorem 1. Thus, there is a continuous function (in the sense of

Theorem 1) FO(-) such that

(W"(-), F(.)) = F0(AX', A( ), AO"'(.), D'(., B,''(.), j12,,(.), j 21 ,,(.), i = 1.2).

The tightness of {Y", (-(.), ,(-), c > 0} and the continuity of the weak limits

follows from this and the fact that the argument processes of F0 (') are tight and

have continuous weak limits. Also, the properties asserted below (3.7) hold.

The representation (3.8) follows from the equality

B'"(t) = 0 bi(X'(s))ds = bi(X'(t'(s))dT'(s), (3.10)

as we will now see. Abusing notation, let c index a weakly convergent subse-

quence of the sets in (3.5), (3.6), and suppose that the Skorohod representation

is used so that we can assume that all weak convergences are convergences w.p.1

and are uniform on each bounded time interval (since the limit processes are

continuous w.p.1). Since the t'(.) satisfy 1t'(t+s)-t'(t)J = O(s), the uniform
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convergence (on each [0,t]) of T(.) to continuous T(.) and XE(.) to continu-

ous X (-) and (3.10) yield the assertion. A similar proof yields the analogous

assertion for the quadratic variation terms.

The last sentence of the theorem is proved in the same way that (5.4) in

[4] is proved, via use of the 'martingale method', and we only do one case.

Let h(.) be an arbitrary real valued, bounded and continuous function of its

arguments and for arbitrary n, let ti < t < t + s, i < n. Define P'(t) = (X"(t),

J12"(t), j 2 1"(t), A'(t), Aoz,(t), D'(t), t'(t), i = 1,2). Let c index a weakly

convergent subsequence of {P5(.), c > 0}. It can be shown that

Eh(P'(t,),i < n)[.4"(t + s) - A'"(t)] = 0.

This last expression caii be shown either by the ideas leading to (5.4) in [4]. or

by a direct calculation using the definition of the conditional expectation E.',

and the fact that the summands in .4' (.) are centered about their conditional

expectations, given the 'past'. By the weak convergence and the fact that

sup E[A'(t)]2 < c for each f < oc. we have

Eh(P(t,), i < n)[A'(t + s) - A'(t)] = 0.

The arbitrariness of h(.), t,. n. t, t + s, implies that

E[A(t + s) - A() I P(u), u < t] = 0,

which yields the assertion. Q.E.D.

The inversion of t(-). We next deal with the inversion of the time rescaling

T(.), to get the appropriate 'limits' of the original sets of processes in (2.8).

Whether this 'inversion' can be done or not depends on the controls. Clearly if

all arrivals at P are rerouted, then for each t > 0, T(t) -- oo as c -. 0 and
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T~) 0 and no inversion is possible. However, since the costs associated with

this policy go to infinity as c - 0, such cases can be excluded. It will turn out

that for the controls of practical interest, the inversion can be done.

Lemma 4. A4ssumne (A2.1)-(A2.5) and that

s v'E [P12 21] < oo (3.11)

for each I < --). Then t(t) < >z w.p I for each t < oc and t(t) - - w.p.l, as

The proof is easy and is omnitted.

For each t > 0, define the random variable

T(t) = mn(7{: i"(7) .

The set {T(.)..s < x ) are -stopping times, since {T(i) S r = j!T(7) S t) E

T1 for all r. Define the a-algebras .77 = J')T~t). For any procesb o(.), define

the rescaled process 6(.) hy o(f) -jt).except let A'() and D'(.) denote

A0 (T(*)) and b'(T( )). resp. Then 1t is the minimal a-algebra induced by

{P(s), s < t}I = f{P(T(s)), s < 11.

Theorem S. Assumc (A2. 1)-(A2.5) and (3.11). Th -ra

X'(1) = X. (0) + B" (t) + [Ai'(O' + A0O'(t) - D'(t)1l + Y' (t)

- U, (t) + J''(t) - J, (f). (3.12)

The Y'() and PUI(.) increase only when X'(t) = 0 (X'(f) = B,, resp.). The

martin gales are all Frt-marfingales. The quadratic variations are given by (3.9)

wth T(t) replaced by t and X(.) by X(.).
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The )rr-f is just a consequence of Theorem 3, Lemma 4 and the properties

of the T(t). The details are omitted.

Remarks on the representation of the martingales. Since the five

processes ,'(), D'(.), i = 1,2, and (A0 1(.), A02(.)) are mutually orthogonal

martingales, we can represent them as stochastic integrals with respect to mu-

tually independent Wiener processes u'ti('), wdi('). If the a, are never zero

(which we have assumed for convenience in this paper), then the u-() are all

.Ft-Wiener processes. Otherwise, we need to augment the probability space and

filtration by adding Wiener processes which are independent of all the procesqes

originally defined on the probability space. We can write the martingales in the

form

(= g, I ,(X(s))du i (s) = J " 2 (X(s))duwi (s), i= 1.2.

D t j gdi j d,(X(s))duai(s) = E 2(X(s))dWd,(S). (3.1C,

f4 01(t) V1/

"4Q'(t) )= Jo a (X(s))dtao(s).

If the {.12'(). J.,I.). > 0) is tight, then the time change t - tE(t) is not

needed. and one can work directly with the onginal processes X'(.),.... We will

next giv, a result for this case which will be useful below. First, we define some

new process by a n )rmalization of t.,e summands in the expressions '-(S.'(t)),

A0 (Sa (t)) and Do'( "'(t)) appearing in (2.6). These new processes will

actually converge weakly to the Wiener processes w0,(-)." D, ine

S.7'1t)/( 1/2

ri- 1/2
It", (I) ] -1di(Xs) ( -( ',,/Y,,), i= 1,2,

rn=1

m= 2
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Theorem 6. Assume (A2.1) to (A2.5) and suppose that {J 12 c(.), J 2 1"(.),

> 0} is fight. Then (note that we pair the two components of 14V"0())

is tight. Let e index a weakly convergent subsequence and denote the limits

by the same letters, but without the c superscript. Let Yj be the minimal a-

algebra which measures the limit process for s <1t. Then the W()are mutually

independent standard .1t- Wiener processes, and

A't 0 j 1/(.( s))d1U. 1 (s),

40 (t) =j ' 2 ((s))d~l"ao(s), (3.15)

fi(t ri/2dG(X(s))dWdo(s).

AlIso (3.12) holds.

Proof. It is easy to show the 'Wiener process' result, owing to the center-

ing of the summands and the normalization by the inverse square root of the

covariance. The rest is as for Theorem 3, except for the representation (3.15).

This can be obtained by using the tightness and a discrete time approximation,

and the details are omitted. Q.E.D.
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4. Boundedness and Approximation to V"(x).

First, we show that there is a control for which the costs are uniformly

bounded.

Theorem 7. Assume (A2.1) to (A2.5), and let V'(z,O) denote the cost

when j'2 ,,(t) = J21 ,,(t) =0. Then

sup E.,W(r, 0) < o.

Proof. It is enough to prove that

sup E[U' '(n +i 1) - U' '(n)] < 00.

Define Af'J'tf) f I~(t) + 40',f(t) - Wi().~e let i = 1, since the proof is

the same for i =2. For an integer n, define the stopping times (omitting the n

and c-dependence in the notation)

7= rnin{t > n :X 1'"(t) = BI),

72= minit > r 2,-, Xl£(t) < B1 12) nl (n + 1),

T ,m+l = rni> 7 2 , X ',(I) = BI) nl (n + 1).

Define V' = minfm :r,= n +4 1). Recall that U"l(-) can increase only on

the intervals [r2m,,T2m.. and not on (,r2,, r2m,+,). Then

N.+1

U'I£(n + 1) -T''c(n) =J: [(X1"(1r2m) - X''"(r2 m.i)
M= 1

- (~1 ~( ) -Afl(T 2m-.)) - (B1 -(T2m .. B1 '(r 2m,,- 1)]. (4.1)

By (4.1) and the square integrable martingale property of M','(.) and the Lip-

schitz continuity property of Bi-'(-), there is a constant KO such that

EjU','(n + 1) -U' 1"(n)I :5 K0 + E(N,' + I)B 1 . (4.2)
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Thus, to prove the theorem, we only need bound EN,', uniformly in n and c.

Given a0 > 0, there is 6o > 0 such that for all bounded stopping times and

for small c

P f sup sup[B 1 ,(s) + Ml,'(s) - (B,'(,r) + MI,'(r))]
f-r+6o>>r

> B d } (43
--- data up to r :5 l - . (4-3)

This implies that

P{r 2n - -m-1 >60 data up to time r2m-} _ 0. (4.4)

Consider the problem of a sequence of 'Bernoulli' trials, where the conditional

probability of success, given the past data, is > a0 and on each success 'time'

advances by bo. An upper bound for our EN' is just the mean number of trials

that are needed to have 1/60 = n, (the next largest integer) successes. Since

the mean number of required trials is monotonic in the (conditional) probability

of success, we get an upper bound by assuming that (4.4) is an equality. Then

P{k trials needed)= (k ) (1-

which implies that all moments of N,, are bounded, uniformly in n and C.

Q.E.D.

We remark that the proof and the uniform square integrability of the incre-

ments in M'(.) and BE(.) (on unit intervals) implies that

sup EIU"-(n + 1)- U'"(n)12 < oo. (4.5)
c,f1

The following corollary will be useful later. It is just a consequence of Theo-

rem 7, the structure of the cost and the discounting. Define V(r) = inf V'(x, J').
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Corollary 8. Assume (A2.1)-(A2.5). Given 6 > 0, there are To > 0 and a

family of 6-optimal controls Jb'(.) such that Jh'(*) do not change after time To

(i.e., after To, there is no rerouting),

A very similar proof to that of Theorem 7 yields the following:

Theorem 9. Assume (A2.1) to (A2.5). If

sup E[J1 ',(t + T) - J'iE(T)] <00c, i 0 j, i = 1, 2. (4.6)

Then

sup Z[U' '(t + T) - U' '(T)] <00o.

if

{Jii '(f + T) - P"' (T), > 0}, i : j, i = 1, 2, (4.7)

is uniformly integrable for each t, then so is {US£'(t + T) - U",'(T), c > 0},

i= 1,2.
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5. The Limit Control Problem

Definition. j(. p 1J2 (.), j 2 1 (.)) is said to be an admissible control for the

limit controlled reflected diffusion (3.12) if it is non-anticipative with respect to

the set of Wiener processes W(.) = (wi(&), Wd&(), i = 1, 2, wao(*)) which 'drive'

the martingales (A'(.), A0'(.), bii(.), i = 1,2) (see the representation (3.13)),

and satisfies P'(O) = 0 and J'(.) is non-decreasing, for a = 12 or 21. We often

say simply that the pair (J(.). It(.)) is admissible. The cost functional for the

limit problem is

V(x, J, W4) = E, Jo0 e70 tk(X(t))dt + E, Joo Csf[kidJ 12 (t) + k2dJ2 1 (t)

+ cid[ 1 (t) + c2dU2 (t)]. (5.1)

The IV(-) appears in (5.1) as well as J(.), since the value of the cost function

will depend on the joint distibutzon of (J(-), IV'(-)).

Theorem 10. Assume (A2.1)-(A2.5) and that for each n

sup E[(J'2 "(n + 1) -J 2 (n)) + (J 2 1 -(n + 1)-J 1 ()]< CC. (5.2)

Let c index a wleakly convergent subsequence of (3.5), (3.6) with limit denoted

by (t(.)7 ... ). Let the retransformed processes defined above and in Theorem 5

be denoted by (T(... ). Then

where W(.) = (Wat(),Wd,(),i = 1,2) is the Wiener process which is used to

represent the martin gales (see (3.13)). If

PJ2 ((n + 1) _ jl 2 ,(n), 1 2 l((n + 1) _ j 2 l1 '(n), c > 0, n < oo} (5.4)
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is uniformly zntegrable, then

V, (X, J,) - v(Z, J, w). (5.5)

Proof. The hypothesis (5.2) implies that inf ETV(t) - oo and ET(t) -- oo
i

as t - oc. Thus, the 'inverse' transformation T(.) is well defined. It also implies

that we need only work on a finite interval (see Corollary 8). For simplicity, we

work with only a couple of the terms of the cost functional. We have

jo e73'k(X(t))dt = o

j e-dJ1'2 c(t) = j e-t'(0dj12£(t). (5.6)

By the weak convergence and the argument of Theorem 3, the right sides of

(5.6) converge in distribution to the left sides of

j e-T(tk(K(t))dt(t) = j e-O'k(X(t))dt,

10 -T(t)dJ12(t) = 10 e-OdJ 12(t). (5.7)

The left sides of (5.7) equal the right sides of (5.7) by the rescaling. The the-

orem follows from the cited convergences (together with those for the other

components of the cost) and Fatous' Lemma. Q.E.D.

Theorems 3 and 5 imply that every limit of a weakly convergent subsequence

is a legitimate control problem in the sense that the pair (J(.), W(-)) which

occurs in the representation of the limit is admissible. This fact and Theorem

10 imply the following.

Theorem 11. Assume (A2.1)-(A2.5). Let J1 2,1(.), j 2 l,(.) denote the op-

timal controls for the physical process. Define

= in f V£(zJP), V = inf V(z, J, W).
(J,W)adm.
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Then

li , V'(x) >! V(x). (5.8)

Remark. We note that (5.2) can be assumed in Theorem 11. If it doesn't

hold for the optimal policy, for each 6 > 0 it will hold for the 6-optimal policy,

owing to the discounting and Corollary 8. We want to prove that (5.8) is an

equality. To get the equality, we will need to use the fact that V'(x) is actually

an optimal cost. In order to do this, we need first to study approximations to

the control problem for the limit model (3.12), (5.1). We will show that there is

an optimal policy for the limit, and that it can be approximated by a policy that

we can apply to the X1(.) process, and which will be 'recovered' under the weak

convergence. Such results will get us the desired equality in (5.8) (Theorem

17), together with a basis for an effective computational approximation. The

computational methods and associated proofs will be dealt with in a subsequent

paper.
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6. Approximations for the Limit Problem, and Convergence of the

Costs

In order to prove equality in (5.8), we first establish the existence of an

optimal policy for (3.12), (5.1), and then obtain a sequence of approximations

to the optimal control. We will use the following assumption.

A6.1. k(.), bj(), o'i(.), O'id(*) are continuous.

Theorem 12. Assume (A6.1). Consider the limit control problem (3.12),

(5.1). There is an optimal policy 7(-) in the sense that there is (X(-)1 J(.)

W(..) satisfying (3.12), where W(.) = iTh.), Td() i = 1, 2} 'drives' the

martingales A') as in (3.13) and the pair (J(.), W(.)) is admissible and

V (X>,W 7 V (X, J, W),

for all admissible pairs (J.1(j, H'(.)).

Proof. The proof is very similar to those of Theorems 3 and 5, and we make

only' a few comments. Let (J'(.), W"(.)) be an admissible pair for (3.12), and

write the corresponding form of (3.12) as (j :A i)

X-t)=X1 + B'"(t) + [A'~t A 0 (t - l,,()

where B't)-f t 'b,(X' . (s))ds and W'(.) = {w" (.), w" (), i = 1, 21 'drives'

the martingales A (),. as in (3.13). Let (J"(.), W"(-)) be a minimizing

sequence in that V(z, j' 2 , W'm) I V(Z).

By Theorems 7 and 10, V(z) <00o. Hence

sup E[J 12 'nIt) + j 21 '(t)] < 0,
n
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for each I < c. Define the time change

T-(t) = I + j 2 nt) + 2

and the inverse it&) = minfr :7(,r) = t}. Analogous to the notation used in

Theorem 3, define X n(-) =X(().Then

.X + .b'm(t) + [Ai"n(t) + A i 0 'n(t) - b~~)

+ J"'~n(t) - jJifl (t) + Y''~n(t) - jnt.

As in Theorem 3, there is a function Fo(.) which maps C'[0, oo) into Ck [0, 0 0 ),

for the appropriate integer k and is continuous in the topology of uniform con-

vergence on bounded time intervals and is such that for all n

The set IT'1-),n (.), jn( i,n (.), A'O~n'b D"(.), B"i~n(.), i = 1, 2, n < 001

is tight. Abusing notation, let n index a weakly convergent subsequence with

limrit denoted by (t(.), k(.) .. ). As in Theorem 3 the (A'(.), A 2 (.) , (A10 0.,

A2 0(.)), b'(.), b 2( .)) are orthogonal continuous martingales with quadratic

variation defined by (3.9). Define the inverse scaling T(t) = minf r :t(T) = t},

and the rescaled processes X(f) = X (T(t)),. Then (3.12) holds, and the

martingales have the representation (3.13) with respect to same Wiener process

W(.) = (W.), Wdi(.), i = 1, 2) such that the pair (J(.), W(.)) is admissible.

By an argument which is almost identical to that of Theorem 10, we have

LiM"V(Z, J"'W) 2 V(z, J, W). (6.2)

We must have equality in (6.2) since V(z, P', IV") I V(z). Thus, (J(-), 14(.))

is an optimal admissible pair. Q.E.D.
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integrable, and so is {UI'(n + 1) - U',N(n), n < 00, N < oo, i = 1,2} by

Theorem 13. Since rN I oo, we can suppose that

(xN(.), sN(.), WON(.))_- (x0(.), j0(-), w0(.))

pathwise. The theorem follows from this convergence, the cited uniform inte-

grability and an argument similar to that in Theorem 10. Q.E.D.

Definition. A solution X(-) to (3.12), (3.13) is said to be unique in the weak

sense if the distribution of the admissible pair (J(.), W(.)) determines that of

WJ.), W(.) X(.)).

In order to obtain our approximation results we require that for each 6 > 0,

there is a 6-optimal control which gives a well defined solution of (3.12), (3.13).

A6.2. For each 6 > 0, there is a 6-optimal control J(.) for which (J(.), W(.))

is admzssibh for some IV(.) and the corresponding solution X(.) to (3.12), (3.13)

is unique in the weak sense.

In the next theorem, we show that there is a 6-optimal control which is

bounded, piecewise constant, and jumps 'in increments'.

Theorem 15. Assume (A6.1) to (A6.2) and let (J(.), W(.)) be a 6-optimal

pair satisfying (A6.2), with X(.) denoting the corresponding solution process.

For A > 0 and p > 0, define the control J,&(') as the piecewise constant control

satisfying: dJV,(t) = 0 on the interval (nA, nA+ A) and on [0,A). For k > 0

and n > 1, set dJ4,(nA) = kp if J'j(nA) - JO(nA - A) E fkp, kp + p). Then

lim V(z, JAP, W) = V(z, J, W). (6.4)

Proof. By Theorem 13, we can suppose that J(.) is uniformly bounded.

By construction, (Jxp('), W(.)) is an admissible pair. A solution to (3.12),
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The following lemma, whose proof is similar to that of Theorems 7 and 9,

will be useful later.

Theorem 13. Assume (A6.1), and let WJ(.,,(.)) be admissible, with

~.(-) and U.(.), be the associated state and reflection process. If

is uniformly integrable, then so is

(,(t +±T) - (U,(T), n < oc1.j i i, j = 1,2.

Theorer, 14. Assume (A6.1) and, for small 6 > 0 let (Jo(.), WO(-)) be

a 6-optimal admissible pair, with Xo(.), being the associated solution to (3.12).

Define 7n,; = supft :J"2 (t) 5 N, J21 (1) :5 N), and let JN(-) be the policy which

equals JO(-) until iN,., and is constant thereafter. W4rite the solution to (3.12) as

X' ~t = X' (0) + B' N I (t) + [kjiN(t) + Aos, 'N(t)]

+ I iAN(t) _UiN11 (1) + jjiN(t) _-iN()

Let 11,N(-) be the set of lWiener processes which 'drives 'the martin gales (. i , ()

).Then, as N - o0,

V(X, J', ,,N) _Vj(z, 3o, Wo) (.3

Proof. 'We can suppose w.l.o.g. that there is a T <oo such that Jo(.)

is constant after T (by an argument similar to that leading to Corollary 8).

Since JIN(T) I J'(T), and EJO'(T) < oo, the {J0" (T), N < oo} is uniformly

integrable, and so is {UiN(n + 1) - Us,1N(n), n < oo, N < oo, i =1, 2) by

Theorem 13. Since TN I oo, we can suppose that

(X N(.), j N(.), WON.) - (XO (.), Jo(.), WO()

30



and reflection processes. The set

{Va(.), JA4*, W(.), UAp(.), Yap('), A > 0, p > 01 (6.5)

is tight and the weak limits all satisfy (3.12), (3.13). By the uniqueness (A6.2),

the limit of any weakly convergent subsequence of the set (6.5) satisfies (3.12),

(3.13). Then (6.4) follows from the weak convergence and the boundedness of

J(.) and the consequent uniform integrability of {Uip(n + 1) - Uj,(n), n < oo,

A >0, p>0, i= 1,2). Q.E.D.

For A > 0. p > 0, let Tap denote the set of admissible (with respect to some

given Wiener process W(.)) controls which are bounded, are constant on each

interval [nA, nA + A), jump only at the times nA, and JI(nA) - Ji(nA-) is

an integral multiple of p. By Theorem 14 and (A6.2), we know that for each

6 > 0 there are A > 0, p > 0 such that there is a 6 -optimal control in some

Tap. We will need to define this control in such a way that it can be used for

the physical X'(.) process.

Write k = (kl, k2), a multi-index, where ki is either an integer or 0. Fix the

Wiener process WI'(.) and A and p. For J(-) E Tap, (J('), W(.)) is admissible.

For I7 > 0 and integers k and n, define qn-,r(') by

qnk,(J (MA), m < n, W(17),t7 _ nA)

= P{d(nA) = kpIJ(mA), m < n,W(1-),1- < nA). (6.6)

By the martingale convergence theorem, as - -* 0
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q,,k_(J(mA). rn n, W(I-y t : nA)

P {dJ(nA) = kp IJ (mA), m < n, W(s), s < nA}

w.p. I (Wiener measure) for each k, ni and value of {J(mA), m < n).

For each I > 0, we next choose a control Jy&) E T~p recursively by means

of the following set of conditional probabilities:

PfdJ-,(nA) =kp I JmA), m < n,WI(s), s < nA} =

= q~k-,(J,(mA),mi < n, W(&y), tj :5 vA). (6.7)

(6.7) specifies the Joint law of admissible (J, (.), W(.)), and there is a solution

X(.) on some sample space which is associated with a pair with the same dis-

tribution as IJ~.) V(.)).

WVe will need the following condition.

A6.3. The uncontrolled system (J(1) =_0) has a unique (in the weak sense)

soluion for each mbtal condition.

Theoremn 16. Assume (A6.1)-(AU.). Let (J(.), 1IV(.)) be admissible with

J(-) E Ta, for some A > 0. p > 0. Define J,~(-) as above. Then

V(Z, J.., W4) - V(Z, J, W). (6.8)

The function 9,,k, (J,(mA), rn < n,-) which is used to get Jy(.) can be chosen

to be continuous for each ni, k, y, and values of the set {J-,(mnA), m < n).

Proof. The proof of (6.8) follows from the weak convergence f{J.,(.), W(.),

Iy > 0) = (J(.), IV(-)), as -1 - 0 and the uniform boundedness of the controls.

By (AU.), the solution to (3.12), (3.13) is unique in the weak sense for an,-
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admissible J(.) ia T.1, The last sentence of the theorem follows from the fact

that for each n, k, -y, and value of {J(mA),m < A}, we can approximate

q, k-,(J-,(MA), m < n,.) by a sequence of continuous distribution functions,

which converge to qk,(J 7y(MA), m < n, .) w.p.1 (Wiener measure). Q.E.D.

The optimality theorem. We now return to the physical process (2.8),

and prove equality in (5.8). Let (J.(.),W(-)) be admissible with J,(-) chosen

by (6.7), where the qnkr(') have the continuity property asserted in Theorem

15. Recall the definition of W'(.) given above Theorem 6.

We would like to define a control J'(-) for XI(.) such that {J(.),

converges weakly to (Jv(),W(-)) as c - 0. First, consider the control J (.)

defined as follows, where the qk,(') are continuous in the u-arguments: J(.)

is constant on the intervals [nA, nA + A) and

P{dJ'(nA) = kp, J(mA), m < n, 14"(s), s < hA)

= P{uJ'(nA) =k IJ(mA), m < n, W'(ij), ij< _ nA) (6.9)

= qnk-y(.P(mA), m < n, '(i7), <y n A).

The control law (6.9) can't quite be realized for XI(.), since the controls for X'(.)

are the result of rerouting decisions and X'(.) cannot be impulsively controlk-d.

But we can come close enough to realizing the above j'(-), as follows.

For notational simplicity, let the kip, i = 1,2, be integral multiples of Vrf.

Let A, -- 0 as - 0 such that A[Vt/ -- oo. Let Q' denote the event that

there are > (B 1 + B 2 )/Vc. arrivals at Po on [nA, nA+A,). We have P{Q" } - 1

as c - 0. Define J'(-) to be any control with the following properties: J'(.)

is constant on [nA + At, nA + A) and on [0, A); for n > 0, the rerouting

[nA,nA + A,) is such that
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P{J'(n.- + A,) - J'(nA) = kp I J'(mA), m < n, W t (s), s < nA, Q'}

= p{JE(nA + ,,,) - J'(,A) = kp I J (,-A), m < ,,w(iy),iy < nA, Q?}

= qn - (J(mA),m < n, W'(i-),i7 :_ nA). (6.10)

The limit of the costs associated with this just constructed J'(.) is the same

as if the jumps of J'(.) are at the time nA + A ,n = 1,2 .... , only and not

spreadout over [nAnA + A,). This can be easily proved by the "time charge

method-. Under this "new" J'(-), {J'(.), W(.)} clearly converges weakly to

(J,(.),W(-)) as c - 0. Now, the above discussion and Theorems 6, 10 and 11

yield the following theorem, where we use the J'() just described. Note that

the rescalings are not necessary, due to the fixed form of J'(.); we get weak

convergence directly in the Skorohod topology.

Theorem 17. Assume (A2.1)-(A2.5) and (A6.1)-(A6.3). Then {X'(-),

Y'(.). "(.), W'(.). J()1 converges weakly to (X(.), Y(.), U(.), W(), J(.)),

whcrc (.) = (ua,(.) U'd,(.), i = 0,1,2) and the limit satisfies (3.12), (3.13).

Also

V' (X, P') - V(Z' J, TV), (6.11)

v'(X) - V(X). (6.12)

Remarks. In [4], it was shown that certain forms of nearly optimal controls for

the limit process were also nearly optimal for the physical process under heavy

traffic. A similar situation holds here, and this partly justifies the use of the

heavy traffic limit, but we reserve the comments for a future paper on numerical

methods.
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Suppose that k, > 0 but k2 < 0 and jk21 < k1 . Then a very similar analysis

can be carried out, with similar results. The costs V'(z) can be bounded from

below since the profit to be made by rerouting from P to P2 is bounded, due

to the limited idle time at P2 .
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7. A More General Network Modc!

The general controlled routing open network version of Figure 1 can be

treated, for any number of servers. Because of the notational burden involved

in writing all the possible 'rerouting terms', we give the extension only to the

model of Figure 2, which differs from Figure 1 only in that feedback is allowed.

We continue to use the notation of the previous sections, except for the following

additions. Let I tj" be the indicator of the event that a service completed at Pi

(i € 0) at real time n is routed to Pj (j # i) if j : 0, and leaves the network if

j = 0. The iniut from P to Pi is

t/f
DJi"t Vrc E -J , l, j = 1, 2, i = 0, 1, 2.

1

D0°"(t) denotes the scaled number of outputs of P which leave the system

directly. The 'fictitious' outputs from P (which are due to our convention of

Py 'processing' even with an empty queue) and which are sent to Pi are

tif

YiIC'(j) = E O 'A m{x-X=O)

The overflow due to a full buffer at P is

/-
=.( ,/7 + [ 'm +P, IiP n ) + - I*p.' lX ,= ,

Then, for j i, 9 6 0,

XII(t) = AI''(t) + As'(t) D'O,'(t) Dq,'(t) + .Di'"(t) + YI"c(t) - Yi:(f)

- u ,(t) + J ,"(t) - Y 1,110). (7.1)

We continue to use the cost functional (2.3).

Replace (A2.3) and (A2.4) by
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A2.3'. There are Tj< 1 such that (Poi replaces the Tj of (A2.3))

-f,, =I I all arrival and service intervals and routings starting by,

time n, except for '2,j') =-~i

A2.4'. 9di = goai + oigao + Pjigdj, .7 i, i,ij 0.

In analogy to the definitions of the centered processes A (),b'()given

in (2.5), define (j :A 0)

n2=1

Define the centered reflection process

m= 1

Define i'j (t) - ' b" ( 1 )). By the same method which was used to get (2.8),

we can write (7.1) in the form (i 96 0, j 96 0, j 96 i)

X'(t) = X'C(O) + BI .-(t) + A' (t) + AIOCMt - ' 0 '((t) - bjt

+ D~i'(&) + 1""(t) - TjY'j'(t) - jY"'"(t) - Ui"e(t) + [Jj"(t) - ji.E(t)I + b''f(t),

(7.2)

where 6'()is as in (2.7).

Theorein 17. Assume (A2.1), (A2.2), (A2.3%) (A2.4%) (A2.5). Then the

five sets of processes (we pair as (AO', A 12 ), (D' 0, D 12 ), (D20,DL21 ))

(7.3)

are tight. The limits are continuous martingales. All of Theorems 2 to 16 hold,

with the obvious changes necessitated by the additional terms in (7.3). The limit
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reflected diffusion is

X-.()= VX'(0) + A' (t) + A0 '(t) - b'0(t) - D' .J(t) + 1."(t) - 1l(t)

+ J'(i) - U0(t) + Y'(i) - P,,Y'(t), i $ j. (7.4)

Also, for i 96 j

qua D'rb0 (t) - d1.j(X(s))ds,
qua bar 1) (t))1

wh ere

Edij (X) = 9d [0 -~( -go) Ti01 ]

Proof. All the details are copies of what was done in Theorems 2 to 16,

except for the treatment of the Y'()term, and some details in Theorem

7. Define ="~t ~i(Ct) The summands in the Yi()are centered

about their conditional expectations, given the 'past', and hence Yi()is a

martingale sum. Its variance is bounded by

cE ifj 'X ,=0)= 0(t). (7.6)
m=0

Since the summands (without the Vc7 included) in khi,'(.) are uniformly square

integrable, cY~~) c> 0) is tight, and all weak limits are continuous processes.

Write the scaled form of (7.2) as

X'()=Xi' + 2Z.,(t) + [V( .. '(t] -,i(t) (7.7)

with the obvious definition of Z().{'.)c >0)l is tight and all weak limits

are continuous processes. Thus, by Theorem 1, {Y'.,U'.,c > 0) is tight
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and all weak limits are continuous processes. This implies that for each t < oo,

,cn Ix_ .=0t
m=0

is bounded in probability uniformly in c, for otherwise some subsequence of

Y' t,(t) would go to infinity with a positive probability. Hence the left side of

(7.6) goes to zero as c -. 0 for each t < oo. Thus =Y',i(.) = zero process.

Theorem 7 also continues to hold, since in the present case we write (4.1) as

[U '((n + 1) + Y 21('(n + 1)] - [U1 ' (n) + Y2lX(n)] = right side of (4.1).

The left hand side of (4.3) now becomes

p{ sup [(B'-(s)+Af'-'(s)- Y 21"(s))-(B'"(r)+M' (r) -Y 21 '(r))] >_ o I

data up to i).

Since y21,'(.) is non-decreasing, the expression is still < I - a 0 for small enough

60, and we can continue the proof of Theorem 7. Q.E.D.
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8. Proof of Theorem 1

For notational simplicity, we prove the theorem for k = 2 and then comment

on the general case. The proof in the general case is the same in all essentials.

The following result is proved in [1], [2].

Lemma. Let P be a degenerate Markov transition matrix whose spectral

radius is less than unity. Then there is a unique 'non-anticipative'function P(.)

with the following properties: P(.) maps Dk[0, o) into Dk[O,o) and Ck[0,oz)

into C'[O,oo), and is continuous in the topology of uniform convergence on

bounded intervals. Let i(.) E Dk[O,oo) and define f(.) = ( t(.), i < k) =

F(i(.)). Define i(t) = i(t) + (I - P')P(t). The g'(.) are non-decreasing and

f(-) can increase only when the i(t) = 0. Also i'(t) > 0, all i,t.

To prove Theorem 1, we will use the lemma in a 'sequential' way. Refer to

Figure 3. We can assume w.l.o.g., that the diagonal entries in Q in (3.1) are

zero. There are four different reflection maps which appear in (3.1), depending

on which segment of the boundary is involved. On the boundary (d, a, b)

segment 1, our system (3.1) is

X(t)=z(t)+ -q12 -q21 y(t), xi(t) > 0. (8.1)

For the system (8.1), with the constraint z'(t) > 0, the lemma defines a contin-

uous mapping z(.) - (y(.),u(.)), where u(.) 0. Call this mapping F,(.). On

the other segments, the system is

Z(t) = z(t) + [ 0 1 1 y(t) - ( , segment 2 = (a,b,c), (8.2)

((t) = z(t) - ( ) , segment 3 = (b, c, d) (8.3)
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z(t) = zWi + [ 31(t) - ( .0,) ,segment 4 = (c, d, a). (8.4)

The reflection maps for (8.2) to (8.4) (with the sides extended to oc) are

trivial, as we will now see, since they are each just concatenations of two one

dimensional applications of the lemma. Let F2 (-) denote the map associated

with (8.2) which sends z(.) into (y(.), u(.)). F2(.) is constructed as follows.

First, we have y'I(.) = U2 (-) = 0. Then y2 (.) is defined by the lemma for k = 1;

in particular y 2 (t) =- min{ 0, inf,<t Z2 (8)} . Finally, the u'(.) is defined by the

reflection needed to keep z' (t) :5 BI; i.e., 0 < B, - z'(i) or

u() 1 min 0f, inf (BI - z1 (s) + q2 IY2(8)) 1  (8.5)
1 :

Similarly, we define the analogous continuous map F3 (.) and F4(.) associated

with (8.3) and (8.4) resp. [The calculation of the yi(.) and u(-) always decouples

into two separate calculations; first getting y(-) and then getting U(.), even for

the general k case as seen below.]

Define S = [0,B1 ] x [0,B 2]. Let z(0) E S w.l.o.g. Define z(.), y,1(.), u,,(-),

z.(.), by.,(.), bu.(.), and r,, as follows: ro = 0, zo(.) = z(.), 6uo(.) = byo(.) = 0,

ri= infli : z(t) V S}, u(t) = y(t) = 0 on [0,T 1]) and z(t) = zo(t) = z(t) on

[0,,rl]. In general, for n > 1, given r,, and y(-) and u(-) on [0,,r,], define

z,,(t) = z(i) + [I - Q'Iy(t fl r,) - u(t nl r,,),

Sn= a boundary segment (1,2,3 or 4) on which lies,

(u()b.-)= F..(z.(-)), (8.6)

zn(t) = z.(t) + [I - Q16bjn(t) - bU.(t),

z(i) = z.() for t < r,+I,
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=r,+ inf{t : z,,(t) S1,

u(t) = u(T,) + bu,(t), for t E

y(f) = y(7-) + 6y.(t), for t E [r.,rT,, 1 .

Note that z,,(t) E S until at least time r, and z,,(t) E S until at least

time rn+l. Hence (6un(t), 6y,,()) = 0 until at least r,. Also z,,(t) = zn(t),

t < r,, zn+l(t) = zn(t) on [0,7n+i], -. +I(t) = z-(t) on [O,r +i]. The idea in

constructing Xn(.) is that when z,(.) exits S on a certain boundary segment,

we use the reflection map (FI, F2 , F3 or F4 , as appropriate) for that segment

to get Zn+l('), until z-n+(') exits S. It must exit on a 'different' segment.

F,.(-) can be any map associated with the boundary segment on which the

exit point Zn-(Tr) lies. Except for in the corner points, there are two such

maps associated with each point on the boundary. Which map is chosen is

immaterial. For definiteness, choose F(') on [e, a, f], F2 (.) on (f, b, g], F3 (.) on

(g,c, h] and F 4 (.) on (h,d,e). We can verify that rn -. oo and (by induction

using the lemma) that the constructed z(.), y(.), u(.) satisfy Theorem 1. To see

that the choice of the map which is used at the points f, g, h, e is immaterial,

let z, -(r") = f. Then F(zn(.)) = F2(z,,(.)) until the infimum of the times

that z,(.) leaves S through [b,c,d,a]. An induction argument, based on this

observation shows that the choices at the points f, g, h, e, is immaterial.

Remark on the general k > 2 case. There is always a decomposition of

the construction of (6yW(.), $un(.)) into the two sequential steps: first calculate

6y,(.) via the lemma, for a reduced system; then calculate the 6bu(.) individually

via an appropriate analog of (8.5). Just to illustrate this point, consider the

case where the space is S = [0, B]k , and focus on the faces of S meeting in
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the corner (B, B, 0, 0,.., 0). On these faces (excluding the edges which do not

touch (B, B,0,0,. .. ,0)), (3.1) is

[0 0 -031  -qkl ( (t)\
X(f) = Z(t) + 0 0 -02~ -qk2 1 ,(t- 02 i

0/

where I 'is a reduced transition matrix. Then first get (y'(-), *,y'()

from the lemma, and then define (for i = 1, 2)

u'(t) mi 0,if( 't j ()
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